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ABSTRACT

A fluld-structure-interaction algorithm has been developed and incorpaorated
into the two dimensional code PELE-IC. This code combines an Eulerian
incompressible fluid algorithm with a Lagrangian finite element shell algorithm and
incorporates the treatment of complex free surfaces. The fluid structure, and
coupling algorithms have been verified by the calculation of solved problems from
the literature and from air and steam blowdown experiments. The code has been
used to calculate loads and structural response from air blowdown and the
oscillatory condensation of steam bubbles in water suppression pools typical of
boiling water reactors. The techniques developed here have been extended to three
dimenstons and implemented in the computer code PELE-3D.

NOMENCLATURE

Speed of sound in the fluid
Divergence

structure iterative constants
Gravitational constant
Stiffness matrix

Mass flow rate

Mass matrix

Preasure

P/p, ratio of pressure to density
Generalized displacement vector
Time

Velocity

Volume

Distance

Convergence constant

Ratio of specific heats
Over-relaxation constant

Mass density

Dummy variable

Kinematic viscosity

SUBSCRIPTS
Iteration number
Refers to original volume
Refers to ullage volume

SUPERSCRIPTS

Time level
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INTRODUCTION

We have developed a fluid-structure-interaction
algorithm for the analysis of the dynamic response
of coupled fluid structure systems. The method is
incorporated into a two-dimensional semi-impliecit
Eulerian hydrodynamies code, PELE-IC. The code is
quasi-two phase since we can couple to either a
one-dimensional or a lumped parameter description of
compressible gases. The code is written in both
plane and cylindrical coordinates in order to handle
a variety of geometrical configurations. The
coupling algorithm is general in nature and can
accommodate a wide variety of structural shapes. It
is capable of following large interface motions
through the calculational grid. By the use of a
variable time step we are able to accommodate
varying flow conditions and maintain computational
stability. The fluid, structure, and coupling
algorithms have been verified by calculations of
solved problems from the literature and by
comparison with air and steam blowdown experiments
(1), (2).

The basic semi-implicit solution algorithm contained
in the SOLA code (3) was used as a foundation for
the development of the PELE~IC code. We track the
movement of free surfaces using a donor cell
treatment based on a combination of void fractions
and interface orientation. This gives us great
versatility in following fluid-gas interfaces for
bubble definition and water surface motion without
the use of marker particles.

The structural motion is computed by a finite
element code (U4) from the applied fluid pressure at
the fluid structure interface. The finite element
shell structure algorithm uses conventional
thin-shell theory with transverse shear. The
spacial discretization employs piecewise-linear
interpolation functions and one-point quadrature
applied to conical frustra. We use the Newmark
implicit time integration method implemented as a
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one step module. The fluid code then uses the
structure's presultant position and velocity as
boundary conditions. The fluid pressure field and
the structure's response are corrected iteratively
until the normal velocities of the fluid and
structure are equal. This results in a strong
coupling between the two algorithms,

GENERAL DESCRIPTION OF THE SOLUTION ALGORITHMS

The underlying approach used by PELE-IC for the
solution of general flow fields is the use of the
semi-implicit SOLA algorithm, The basic assumption
of this approach is that all flow variables within
the computational grid satisfy the continuity
equation for each cell, regardless of whether or not
the computational cell contains a free surface or a
moving structure. For incompressible fluids this
means that all cells are divergence free. This
assumption permits freedom of motion for all
surfaces throughout the grid. Superimposed on this
basic algorithm we have applied the boundary
conditions for free surfaces, compressible gases,
and moving structures.

In this section we will give a brief
description of the solution algorithms.

SOLA Solution Algorithm

The SOLA algorithm uses a Newton-Raphson
iteration on the pressure field to solve the mass
conservation equation. At each iterative step the
pressure in each fluid cell is adjusted to satisfy
the divergence criteria. In this algorithm the
pressure is a cell centered variable and the
velocity components are specified on cell sides.

The algorithm is solved by first writting the
Navier-Stokes equation for the fluid veloecity, u, in
terms of the time level:

du/dt = («Veuu + g + szu)n—Vpn*l (1)
where the superscript n indicates the time level and
p = P/p is the ratio of the pressure to the
density of the fluid. The body acceleration is
given by g and the kinematic viscosity is specified
by the constant v. Setting p®*! = pR + &p
gives
w1 = [u + 8t (~Veuu = Vp + g + wW2u)]%+ &t6Vp  (2)
Defining the term inside the brackets as {i, then the
equation to be solved is

u*l = § o+ Stévp (3)
where U is found using a slightly modified form of
the finite difference formulation of Hirt, et al. (3).
This equation is solved iteratively where we define
the divergence error, D, for each cell at the ith
iteration as

V-ui = Di 4)

and 1 is used as the first trial velocity to start
the iteration process. The pressure increment in

each cell necessary to update the velocity field is
given by

-(1+¢)D;

3D73p )

Gpi =

where ¢ i3 a correction term (0 < ¢ < 1)
dependent upon adjacent cells in the direction of
the sweep through the grid, and 3D/3p is a
constant dependent only upon the cell size, the time
step, and the presence of a structural boundary. We
update the velocity field in each cell with the
pressure increment, using

Suy = +8p,6t/82 (6)
where 8z is the cell side in the direction of u,
and the sign is chosen dependent upon which side
centered velocity component is being adjusted.
Satisfaction of the continuity equation in any
particular cell perturbs the velocity field of its
neighbors. Hence, the method is applied in sweeps
throughout the grid until the divergence error
everywhere satisfies

V'ui = Di i € (7)

where € is a preset convergence tolerance which
should be set according to the minimum flow field of
interest in the solution. The final velocity and
pressure fields are then

utl o= o+ Z;8u; and ptl

a2 pt + Z,6p; (8)
Since the solution procedure is a
Newton-Raphson iteration, the rate of convergence is

dependent upon the magnitude of 3D/3p which has

the form
F F
a_Da 26t [_x..,._l]

(9)
ap 5x2 5y2
where F, and Fy are dependent upon structural
interfaces coupled to the fluid cell. If there is
no structure, then Fy, = F, = 1. From the
formula for 3D/3p we see ¥hat convergence is
accelerated by the use of large time steps and small
cell sizes. However, the user is limited in his
choice by the physics of the problem. In general,
we require that

e <o

where §z is the component §x or 8y in the
direction of the maximum velocity u.

(10)

Thin Shell Algorithm

The finite element module uses simple shell
theory with transverse shear (see Kraus (5)). The
element formulation was described by Hughes and
Taylor (6) for beams and plates, and was extended to
axisymmetric and plane shells by Goudreau (7).
(Similar results were obtalned by Zienkiewicz et
al. (8) at about the same time.) The element is a
two-node, conical frustrum with three degrees of
freedom per node. Shape functions are plecewise-
linear for displacements and rotations. The shear
"locking" associated with low-order interpolation is
removed by one-point quadrature. Large deformation
(here two to three shell thicknesses) is accounted
for in an approximate way by reformulating the
stiffness matrix at every time step.
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The Newmark implicit time integration scheme
(see Goudreau and Taylor (7)) is used at each time
step to move the shell. The algorithm has the form

(K + 4M/(66)2)QR*L = pn*l _ Ly an/(s¢)2
vhere

(11)

A" = QP+ &t + 3R(8t)2 (12)

Goudreau (2) gives the derivation of K and a FORTRAN
listing of the one-step module.

The thin shell algorithm has been made more
general by the addition of the following four
features:

(1)
(2)

Each element may have its own thickness.

Each node can be specified to have its own
separate restraints and prescribed initial
displacement.

(3) The code computes the static deflection of
the structure as a result of the initial
loading before beginning the dynamic
solution.

(4) The gas pressure in the ullage region is
applied to the shell as well as fluid
pressures.

Fluid Structure Interface Algorithm

This algorithm couples the fluid motion to the
structure's motion within the SOLA iteration loop.
Normal velocity compatibility between the structure
and fluid is required where the Lagrangian shell
crosses either the I-line or J-line intercept which
defines the centroid of the Eulerian cell, The
choice depends on the angular orientation of the
structure, e.g., for angles equal or less than 45°
we use the I-line coupling. The cell side coupled
velocity is the one closest to the structure along
the intercept line. In this manner, we maintain a
smooth coupling whenever the structure crosses an
Eulerian grid line. The finite element module uses
the pressure field supplied by the fluid and
provides the fluid code with the resultant position
and velocity of the interface. Each change in the
pressure field causes a different structural
reponse, and each different response changes the
flow field of the fluid. Therefore, the iteration
proceeds until both conditions are satisfied.
Within a single iteration, all Eulerian fluid zones
are adjusted one by one, using the latest values
available, and then all the Lagrangian shell nodes
are simultaneously adjusted by the implicit time
step solution.

The pressure applied to an element is
determined by an interpolation along each
intersecting I or J line to the neighboring full
fluid cell, These interpolated values are weighted
by the liquid content of the cell so that the proper
pressure is applied when a free surface is in the
same cell. The interpolation procedure provides a
smooth pressure history whenever the structure
crosses a grid line.

The solution strategy is to first set the
normal fluid velocity equal to the normal structure
velocity at the coupling point. The structure's

normal velocity is found by an interpolation between
nodal values and the intercept angle. The normal
fluid velocity is found by an interpolation between
all four of the cell side velocities. This
determines the cell side velocity which is coupled
to the structure. This first step of setting the
coupled Eulerian cell velocity to satisfy the
boundary conditions imposed by the structure causes
the cell not to satisfy the divergence criteria;
therefore, the second step is to adjust the cell
pressure using the SOLA algorithm so that the cell
is divergence free, This two step process is
repeated each iteration until both conditions are
satisfied.

The Free Surface Algorithm

Accurate free surface tracking is necessary to
allow the application of velocity and pressure
boundary conditions at fluid-gas interfaces. We
track the free surface by a combination of void
fraction and surface orientation in each cell. The
void fraction provides for the conservation of mass
and the surface orientation allows us to apply the
proper boundary conditions and follow the flow from
cell to cell.

The free surface algorithm performs four
functions:

(1) Determines the surface orientation within the
calculational cell based upon its fluid content
and that of neighboring cells, This
orientation is specified by its intercepts on
two sides of the cell. Within the cell, the
interface is considered to be a straight line
segment. Thus, the surface is tracked by its

- intersection of grid lines.

(2) Applies the prescribed boundary pressure to the

fluid surface. This is done by finding the

appropriate cell centered pressure by an
interpolation from the nearest full fluid cell
to the boundary. Recent additions to the code
also allow the application of a prescribed
boundary velocity to the fluid surface. This

option allows one to drive the surface with a

moving piston. Both these options allow the

boundary conditions to be a function of time.

(3) Calculates the fluid advection based on surface

orientation using the donor cell method where

the amount of liquid advected is determined
from the contents of the upstream cell, the
orientation of the surface, and the velocity of
the common liquid side. This method guarantees
the conservation of mass during advection.

(4) Uses velocity boundary conditions for the void

sides of the cell to maintain continuity of the

flow field. This assures a smooth flow when a

surface crosses grid lines.

Special Features

The main application of the code to date has
been to studies of the pressure suppression systems
of boiling-water reactors during postulated
loss-of-coolant accidents., Consequently, various
special features have been added directed toward the
solution of these problems. Some of these special
features are described in this section.



Downcomer Pipes

Downcomer pipes are modeled by specifying the
bounding grid lines as rigid. A special algorithm
has been added to the code to allow this option. In
this manner, pipe wall thicknesses small in
comparison with a calculational cell can be
correctly modeled. For vent clearing problems, the
specified driving pressure is applied as a boundary
condition between the grid lines defining the pipe.
The code has the capability of handling up to two
rigid downcomer pipes with driving pressures in this
manner,

Obstacles and Baffles

Obstacles and baffles which restrict the flow
can be modeled by spescifying portions of grid lines
as rigid boundaries. The code will then apply the
boundary condition of zero normal velocity at this
boundary. There is no restriction on the number of
such obstacles that can be specified.

Coupling to Compressible Gas Flow

In many applications the downcomer is driven
from a drywell with either variable or constant
pressure. Sometimes this flow is further controlled
by the use of an orifice. To provide for these
situations, a flow model coupled to the fluid
dynamics was developed. This model couples the
bubble pressure to the drywell and current bubble
volume by the equation

vyY v
P(t) = Py (—V‘?—) [1 e ko d‘r] (13)
u o

where

@ = mass flow rate through the orifice as
specified in Vennard (9). The formula
used depends upon whether the flow is
choked or unchoked.

Vo = original downcomer volume from the
orifice to the water level

V = current steam volume including the
bubble. :

Py = initial ullage pressure.

The time of integration, t, covers vent clearing and
subsequent bubble formulation and growth.

In application we find that the mass flow is
initially choked and dependent only upon the drywell
pressure and density. Subsequently, during vent
clearing, the flow becomes unchoked and is dependent
upon both the drywell pressure and the bubble
pressure. Since the bubble pressure is dependent
upon the bubble growth in the pool, there is a
coupling between the suppression pool and the
drywell.

Variable Ullage Pressure

During a vent clearing event, the bubble growth
causes a pool swelling in the confined ullage
region. This compressed air region then provides an
upload on the confining structure. We derive this

pressure pulse from the perfect gas law using the
ullage volume change as calculated from the rise of
the water surface. In experiments performed at the
Massachusetts Institute of Techmology (10), the test
configuration applied this ullage pressure to the
bottom flexible plate. The code has been modified
to simulate these experiments.

Collapsing Bubbles

In chugging studies of collapsing bubbles, we
have applied a condensation model to provide the
applied bubble pressure. This pressure is dependent
upon the inflow rate of steam and the condensation
rate; both of which are dependent upon the bubble
volume time history. The use of the void fraction
and surface orientation algorithms allow us to
monitor the bubble volume accurately.

Compressibility Effects

In the mass continuity equation, the
incompressible assumption sets 3p/3t = 0. We
may take into account small changes in
compressibility by substituting the wave equation

3 _ 1 3P 11
at T o2 ot ()
into the mass equation, where ¢ is the speed of

sound in the fluid. This, then, changes the
specification of the divergence leading to

= Yoy + L 3P (15)
D = Vey + =z 3 .
and
F F
)RSV B SR S | (16)
3p - %% T3 3 2.2
P &x=  9y° 206t

which are used in the iteration and for setting the
velocity boundary conditions.

SUMMARY

We have developed three new algorithms to treat
free surfaces, fluid-structure boundaries, and steam
condensation. The first is an air-water surface
algorithm that has been used to model bubble growth
and pool swell in reactor pressure suppressure
systems. The second is a fluid-structure coupling
algorithm that correctly couples the Lagrangian
structure overlaying the Eulerian grid. The third
provides the driving pressure for bubble growth and
collapse dominated by steam condensation.

These algorithms have been incorporated into a
three-dimensional version of the code, called
PELE-3D. With this version, we are able to study
nonsymmetric effects.
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